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1 INTRODUCTION

Estimating the demand for health services is a major field of application of
count data regression, since the observed outcome variables of interest only
take on non-negative integer values, for instance, the number of visits to a
doctor or hospitals stays. Studies in this discipline of health economics aim
at assessing the impact of health-related, socio-economic, or insurance-related
characteristics on individuals’ demand for health care. The predominant re-
gression techniques for modeling health service demand are entirely parametric,
for example, the Poisson, negative binomial, zero-inflated, and hurdle regres-
sion models. Being typically estimated by maximum likelihood, these models
incorporate potentially restrictive assumptions which might severely limit the
analysis of heterogeneous effects. Basically, the assumptions in parametric
count data regression refer to the distribution of the outcome variable or to
the parametrization of the conditional mean. While the count data literature
has focused on relaxing the distributional assumption, we will concentrate on
the conditional mean specification. In virtually all existing count data models
used in practice, the assumption E[y|z] = exp(z/f) is required for consistent
estimation. Count data models with a more complex structure, e.g. finite
mixture models, hurdle models, and zero-inflated models, embody slight vari-
ations of the conditional mean assumption due to an incorporated weighting
associated with multiple classes (Cameron and Trivedi, 2013). Moreover, the
conditional mean assumption substantially limits the analysis of heterogeneous
effects, which might be considered in the context of robustness checks or be
the major object of interest in an empirical study. For instance, in a policy
evaluation, researchers might want to elaborate the direction and magnitude
of the impact of a policy measure for some subgroups in the sample in order
to prevent potentially countervailing effects and to optimize accordingly the
corresponding program.

The conditional mean assumption typically imposed in parametric and
semiparametric count data regression specifies a log-linear conditional mean,
i.e. Ely|z] = exp(2’). In the following, we focus on the linearity imposed on
the argument of the exponential function, i.e. the single index /8. We still
maintain the exponential response function as it guarantees the non-negativity
of the dependent variable. In this study, we abstract from a discussion of the
exponential function as a valid response function. See Weisberg and Welsh
(1994) for a discussion of this topic. A violation of the conditional mean
assumption causes inconsistent estimation of almost all count data models.
Moreover, the ability to model heterogeneous effects is restricted by the sin-
gle index specification (Frolich, 2006). As pointed out in Winkelmann (2008),
the linearity assumption embodied in the conditional mean might be violated



frequently, for instance, due to nonlinear or heterogeneous effects. In the con-
text of the demand for health services, nonlinearities might arise for certain
characteristics. For example, the number of a person’s hospital visits might
increase more sharply if that person suffers from multiple chronic conditions at
the same time, as compared to a situation without any previous disease. More-
over, heterogeneous effects, e.g. heterogeneous responses to a certain policy,
might cause a violation of the linearity assumptions and might not be de-
tected by parametric count data models (Winkelmann, 2008; McLeod, 2011).
Heterogeneity refers here to different effects for individuals with different char-
acteristics. In the empirical application in Section 4, we provide an example
where the effect of providing access to Medicaid differs according to the level
of the household income — a pattern that cannot be revealed by using a linear
specification of the conditional mean.

In this paper we propose a semiparametric negative binomial type 2 estima-
tor that is based on the local likelihood approach. This allows us to abstract
from the linearity assumption embodied in the conditional mean specification
and to take into account overdispersion at the same time. The local likelihood
approach, as initially developed by Tibshirani and Hastie (1987), is introduced
to the context of modeling the demand for health services. Local likelihood
estimation is a well-studied method in the statistics literature (Tibshirani and
Hastie, 1987; Fan et al., 1995; Fan and Gijbels, 1996; Fan et al., 1998) but
has only recently been introduced to the context of count data regression by
Santos and Neves (2008). Basically, the local likelihood approach is appealing
for two reasons: First, it is sufficiently flexible to leave unspecified the relation
between the covariates and the conditional mean of the independent variable,
and thus allows for potential nonlinearities. For this reason, it is well-suited
to uncover heterogeneous effects in the data. Second, it maintains a likelihood
structure and, hence, specific estimators for count data regression can be de-
veloped. As a consequence, efficiency gains can be achieved compared to fully
nonparametric estimators (Frolich, 2006).

This paper contributes to the literature in various ways. It is the first to
introduce the local likelihood approach into the field of estimating health care
demand. Moreover, it extends the previous work of Santos and Neves (2008)
on local likelihood estimation for count data regression, to settings with mized
data, i.e. the set of regressors includes categorical and continuous variables,
a situation frequently encountered in estimating the demand for health ser-
vices (Jones et al., 2013). For instance, dummies for gender or categorical
variables for health status are regularly included in such regression models.
Frequently, studies in this field are also interested in a treatment effect, e.g.,
health insurance provision, with regressors typically defined as binary vari-
ables. Furthermore, the local likelihood negative binomial type 2 estimator



derived in this paper is compatible with overdispersed data, i.e. it allows ab-
stracting from the equidispersion assumption maintained in the Poisson model
by Santos and Neves (2008). Finally, this paper offers the first goodness-of-fit
comparison of a local likelihood estimator for count data regression with com-
monly implemented fully parametric and nonparametric estimators, in both a
simulation study and an empirical application.

Up to now, there have been only a few count data models that allow ab-
stracting from the log-linearity assumption on the conditional mean. Rather,
many of these methods focus on the choice of the exponential function as a re-
sponse function, for instance Weisberg and Welsh (1994). Winkelmann (2008)
and Cameron and Trivedi (2013) provide an overview of methods to deal with
violations of the conditional mean assumption. In so-called generalized par-
tially linear models (Robinson, 1988), it is assumed that the log-linearity as-
sumption holds for a part of the regressors, while it is known to be violated
and hence left unspecified for the remaining fraction of explanatory variables.
For instance, Severini and Staniswalis (1994) propose estimating the unknown
relation by kernel weighted log-likelihood (Staniswalis, 1989). However, this
approach is limited by the necessity of separating the covariates for which a
log-linear relation is known from those with an unspecified relation.

Due to the encountered limitations, the existing semiparametric methods
may be of limited use in health economic settings in which the validity of the
log-linearity assumption is doubted. Alternatively, researchers might employ
fully nonparametric methods that do not impose any assumptions on the re-
lation between the dependent variable and the regressors. In a recent study,
McLeod (2011) suggests a nonparametric kernel density estimator in order to
model health service demand and finds a superior in-sample model fit compared
to a finite mixture negative binomial type 2 model. Overall, fully nonparamet-
ric methods can be judged as non-specific, in that they are generally applicable
to any context and not explicitly developed for count data regression. Accord-
ingly, they do not take the structure of the count variable (as a non-negative
integer) into account. By incorporating a reasonable assumption on the error
distribution in the count data model (i.e. non-negativity), the local likelihood
approach allows to achieve efficiency gains as compared to fully nonparametric
methods (Frolich, 2006).

As an application, we analyze data from the Oregon Health Experiment
(Finkelstein et al., 2012). As a lottery was key in conducting the experiment,
for randomizing the possibility of getting health insurance, we are in particular
interested in the estimation of the intent-to-treat effect of the result of the
lottery. We detect a nonlinear effect and, hence, a heterogeneity in the intent-
to-treat effect according to individuals’ income. Our results suggest that the
effect varies substantially for different levels of income and that it is related to
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individuals’ eligibility.

The remainder of this paper is organized as follows: In Section 2 we derive
our semiparametric local likelihood negative binomial type 2 estimator and
extend the local likelihood framework to discrete regressors. In Section 3 we
compare our model to fully parametric and nonparametric estimators in a
simulation study. In Section 4 we illustrate the relevance of our estimator
using a real-data empirical example. Section 5 concludes.

2 MODEL AND ESTIMATION

2.1 A local likelihood estimator for count data

Extending the work by Santos and Neves (2008), a local likelihood negative
binomial type 2 (NB2) estimator is derived as a semiparametric estimator
for count data regression which is compatible with (i) overdispersed and (ii)
mixed data. A sample of n i.i.d. observations with outcome variable y; and
covariates x; is considered. In line with the previous section, y; is a count
variable, i.e. it only assumes non-negative integer values, y; = 0,1,2,... The
data is mized, i.e. the k independent variables are either continuous or discrete
in nature x; = (x5, z%). There are k,; discrete or, alternatively, categorical, and
k. continuous regressors, such that k; + k. = k. A categorical variable z¢, i.e.
sth component of the discrete regressors vector z¢, takes c, different values
with ¢, > 2, ie. 24 €{0,1,2,...,c, — 1}, s =1,.... kq.

The following presentation of the local likelihood NB2 estimator parallels
that of the parametric benchmark model in Winkelmann (2008) (including
notation). In contrast to the parametric NB2 framework, the linearity as-
sumption in the specified conditional mean, i.e. 2'5 in E[y|z] = exp(2’B), is
dropped. The conditional probability function of y, f(y|u,c?), is the negative
binomial probability function

Folo®) = g 0 (2 ) (). o

o) P(y+1) \p+o? pto?

where Fly|z] = p and Var(y|z) = p + o*u?® denote the conditional mean
and variance of the outcome variable of y with precision parameter o2. T'(-)
denotes the I'-function for which the identity I'(z + 1) = 2I'(z) holds which
will be employed later in the derivations.

The intuition behind the local likelihood approach can be illustrated best
in a comparison of the semiparametric model setup to the parametric frame-
work. In a parametric NB2 model, one would now fully specify the conditional
mean as a function of the regressors, u = exp(z/f3), and maximize it w.r.t. 3
accordingly. However, in the local likelihood model, we do not assume that the



regressors enter the conditional mean linearly, i.e. E[y|z] = exp(z//3). Instead,
the relation m in p = exp(m) is left unspecified and m is fitted locally by using
a Taylor series approximation of degree p, m,,. In order to weight more heavily
observations that are close to a certain point (y;,x;), a kernel weighting I,
is introduced in the log-likelihood function. The conditional locally weighted
log-likelihood function is set up as

n Yi
Lo(po, o) = Y. H (Zlog(002+j1)) — logy;!

=1
—(yi + 09 Hlog(1 + ad o) + yilogod +yilog o} K] . (2)

In accordance with the notation in Santos and Neves (2008), the subscript
in Ly indicates that we use a local constant approximation for the unknown
parameters, i.e. u(zg) ~ po and 0%(zy) ~ o2. Here, for the sake of simplicity
of notation, only local constant approximations (p = 0) are treated. A more
general treatment, with pth order polynomials, can be found in Fan et al.
(1995) and Fan et al. (1998). The v = (h,A) in (2) denotes the vector of
smoothing parameters for the continuous (h) and discrete (\) regressors. The
first-order conditions (FOC) w.r.t. po and o7 then define the local constant
estimators on (u, 0?):

oL vy (yi+op?)od
=0 Z{__# K,;=0 (3)
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From the FOC w.r.t. u, one can derive an expression for the local constant

estimator jig:
N ?: yi KK i
fo = SVt )
2im
Here, the result of Fan et al. (1995) on the local likelihood estimation of gen-
eralized linear models (GLMs) can be verified, i.e. the expression for the

local (constant) likelihood NB2 estimator coincides with that of the Nadaraya-
Watson estimator. Accordingly, the local constant likelihood NB2 estimator is



consistent under minimal assumptions, those which are sufficient for the con-
sistency of the Nadaraya-Watson estimator (Li and Racine, 2007). It can be
shown that the negative binomial 2 distribution with known ancillary parame-
ter 0~2 belongs to the linear exponential family and hence the NB2 model can
be classified as a GLM (Hilbe, 2011). The estimator 62 can be obtained by us-
ing appropriate numerical methods. The asymptotic theory for local likelihood
estimators in the context of GLMs can be found in Fan et al. (1995).

2.2 Kernels for continuous and discrete regressors

In order to develop a local likelihood estimator suitable for mixed data (i.e.
discrete and continuous regressors), it is necessary to use kernel functions that
take into account the discrete nature of the regressors. We extend local like-
lihood estimation so as to smooth discrete variables. This greatly extends its
applicability, since discrete variables are often encountered in models of health
service demand (for instance, insurance status or treatment evaluations in gen-
eral). Building upon Li and Racine (2007), the so-called generalized product
kernels will be discussed in the following. The main advantage of using these
kernel functions is that we can use all observations in semi- and nonparametric
estimation, instead of fitting the data separately for all possible combinations of
the discrete regressors. Therefore the curse of dimensionality only includes the
continuous variables and, thus, is substantially less severe than in early versions
of kernel regression where the so-called “frequency approach” was used. More
information on the frequency approach and its shortcomings can be found in Li
and Racine (2007, 188 ff.). Paralleling Li and Racine (2007, 136), we define the
kernel estimators for the continuous and discrete regressors separately. Note
that in this section, a potential natural ordering of the independent variables
is ignored. An extension to ordered regressors is straightforward by inserting
an appropriate kernel function (Li and Racine, 2007).

For the continuous regressors, the product kernel Cj(z¢ z5) at a point
x = (x¢, %) with continuous part 2¢ = (7, ...,z ) is defined by

ke c _ pc
Ci(a*,a2) = [ g " (%) , (6)
q=1

q

where h, € (0,00) is the bandwidth or smoothing parameter for the regressor
rg, ¢ =1,..., ke, and w, is a kernel function for the continuous regressors that
is symmetric, nonnegative, univariate and satisfies the standard assumptions
listed in Li and Racine (2007, 9). In the Monte Carlo simulation and the
application in Section 3 and 4 we use a Gaussian kernel.



For the discrete regressors z¢, with s = 1, ..., k4, we define a product kernel
with smoothing parameter A; € [0, 1] that incorporates a variation of the kernel
function of Aitchison and Aitken (1976), such that

1, ifad =2
d d o ) 18 S
Wd,s(xgv T, )‘S) - { /\37 otherwise <7)

Accordingly, the product kernel for the discrete regressors becomes
ka ka L
1(zd, £
D)\(:Ed, l‘;i) = deﬁ(gg‘:’x?y As) = H )\S(%ﬁéx )’ (8)
s=1 s=1

with smoothing parameter \, € [0, 1] and indicator function 1(x¢, # x4), which
is equal to one when 2%, # x4 and zero otherwise. A combination of the product
kernels for the continuous and discrete regressors yields the generalized product
kernel:

K%’i = K%i<x>$i) = Ch(:Ec,:L‘f)DA(ZEd,ZL‘?), (9)

where v = (h, \) with A = (hy, .., hx.) and A = (Aq, ..., \g,)" using the defini-
tions of (6), (7), and (8).

A discussion of kernel estimation is always accompanied by a discussion on
the selection of the bandwidth v = (h, \), since estimation is highly sensitive
to the employed bandwidth selection method. In contrast, the choice of the
kernel function itself has only a minor effect on the results. There are many
different procedures for choosing the bandwidths, ranging from rule-of-thumb,
to cross-validation (Li and Racine, 2007, 66 ff.). Fan et al. (1995) state that
least-squares cross-validation can be trivially adapted from nonparametric re-
gression to local likelihood estimation. Moreover, they emphasize that “plug
in” methods are preferable, as they are found to be less variable than cross-
validation. In the simulation study and the empirical example in Sections 3
and 4, we employ least-squares cross validation due to its convenience of im-
plementation. More information about the implementation in R can be found
in the Appendix and the replications files are available.

3 SIMULATION STUDY

In this section we apply the semiparametric NB2 estimator to simulated data
and compare its small-sample performance to that of the parametric bench-
mark model and a nonparametric conditional density estimator (NPCDE) as
recently proposed for estimating health care demand by McLeod (2011). The
NPCDE is implemented as suggested in McLeod (2011, 1268), i.e. the value
with the highest predicted probability, which corresponds to the conditional



mode of the nonparametrically estimated density, is taken as the NPCDE
outcome prediction. In the following, the comparison focuses on estimation
of incremental effects and out-of-sample predictive accuracy of the conditional
mean. We generate situations where the linearity assumption in exp(z’/3) holds
and fails to hold. The data generating processes are presented in Table 1. The
regressors X; ., Xid,, and X, 4, are drawn from identical distributions across
all DGPs. The continuous regressor X ., is drawn from a uniform distribution
on the interval [0, 1]. The dummy X; 4, assumes the values 0 and 1 with prob-
ability po = p1 = 0.5. X 4, takes the values 0, 1 and 2 with equal probability
po = p1 = p2 = 1/3 and is treated as a categorical variable.

Table 1: Definition of the Data Generating Processes

DGP Distribution o o2 Po

DGP1  NB2 exp (1.2 — 0.4X; c; +0.5X; 4, — 0.8X; 4,) 7 -

DGP2 NB2 exp (0.8 +2.5X; ¢, +0.5X; 4, — 0.1X; 4, 7 -
—2.8X7 . +0.8Xi,c; Xiay +1.2X5,0, Xi a0y — 1X7 ;)

DGP3 ZiNB2 (1 —=po) - kDGP1 7 0.2

DGP4 ZiNB2 (1 —=po) - kDG P2 7 0.2

Throughout the simulation study, we implement six different estimators.
An overview on the estimated models is given in Table 11 in the Appendix.
Additional to the semiparametric local likelihood negative binomial estima-
tor (LLNB) and the NPCDE, we esimate the parametric negative binomial
2 model in a linear conditional mean specification (PNB (1)), i.e. the inde-
pendent variables enter the regression model only via linear terms. The model
PNB (1) is correctly specified under DGP1 and misspecified under DGP2 as all
interaction terms are omitted. Additionally, we estimate the parametric NB2
in a more flexible specification (PNB (2)), i.e. we include all two-way interac-
tions of the variables plus a quadratic term of the continuous regressor X, ,.
This model specification is implemented in order to present a comparison of
the performance of a flexible — although still not entirely correctly specified —
parametric model (i.e. the model does not include X7, in DGP2) with the
semiparametric model. In order to assess the performance of the local likeli-
hood estimator in presence of excess zeros, we provide additional results for
zero-inflated versions of DGP1 and DGP2, named DGP3 and DGP4. Accord-
ingly, an additional zero-generating process is introduced which sets outcome
variable Y; equal to zero with probability po = 0.2. If Y; is not set equal to
zero in this stage, it is generated by a negative binomial distribution as in
DGP1 or DGP2. DGP3 and DGP4 generate on average 42% to 45% of zeros



as compared to 27% to 31% of zero-outcomes in DGP1 and DGP2. The models
PZNB (1) and PZNB (2) are zero-inflated versions of PNB (1) and PNB (2)
with PZNB (1) being correctly specified in DGP 3.

Prediction of Conditional Mean

The first part of the simulation study focuses on the models’ predictive power
with respect to the conditional mean p =E[y|z]. We generate small samples
of size n = 100,200,400 in R = 500 repetitions according to DGPs 1 to 4.
Model fit refers to out-of-sample predictions obtained from a 50% data split
and is assessed by the mean squared error (MSE), the root mean squared error
(RMSE), and the mean absolute error (MAE). Results as averaged over all
repetitions are presented in Tables 2 to 7. In the setting with the correctly
specified parametric model (DGP1), the PNB (1) exhibits the best model fit
in terms of all three goodness of fit statistics. This performance is in line with
a basic result obtained for maximum likelihood estimation. It can be shown
that the maximum likelihood models have the minimum MSE provided the
models are correctly specified (Winkelmann, 2008). However, the local likeli-
hood estimator performs relatively well in comparison to the fully parametric
alternative with a MAE and RMSE being 48% to 64% larger than those of the
PNB (1) on average.

Table 2: Simulation Results, Parametric NB2, PNB (1)

Model Fit

m o
n DGP Bias MSE MAE RMSE Bias MSE MAE RMSE

100 DGP1 0.0141 0.3614 0.3903 0.5392 0.2956 11.5130 2.8063 2.8063
200 DGP1 0.0036 0.1466 0.2562 0.3518 0.8774 10.9737 2.6863 2.6863
400 DGP1 0.0068 0.0740 0.1835 0.2535 0.7238 8.6618 2.2535 2.2535
100 DGP2 0.2454 4.6975 1.3525 2.0381 -2.7162 13.1709 3.3408 3.3408
200 DGP2 0.1784 3.8201 1.2089 1.8780 -3.3596 13.8310 3.4948 3.4948
400 DGP2 0.1725 3.3418 1.1557 1.8000 -3.7384 14.6295 3.7384 3.7384
100 DGP3 0.0367 1.3282 0.7497 1.1198 -3.7689 20.8667 4.2755 4.2755
200 DGP3 -0.0023 1.1136 0.6877 1.0441 -4.5797 23.4647 4.7010 4.7010
400 DGP3 -0.0064 1.0220 0.6542 1.0055 -4.9672 25.1539 4.9696 4.9696
100 DGP4 0.3339 7.4476 1.6793 2.6173 -5.4385 31.0786 5.5053 5.5053
200 DGP4 0.2299 6.2587 1.5254 2.4429 -5.7779 33.5959 5.7779 5.7779
400 DGP4 0.1994 5.7027 1.4686 2.3642 -5.8897 34.7495 5.8897 5.8897

In the misspecification scenario (DGP2), the local likelihood estimator per-
forms best in terms of all model fit statistics even in comparison to the more
flexible parametric negative binomial model PNB (2). While the flexible spec-
ification of the parametric pays off in terms of a better out-of-sample predic-
tive performance compared to the linearly specified PNB (1), the MSE, MAE
and RMSE of the PNB (2) are substantially larger than those of the LLNB.
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Table 3: Simulation Results, Parametric NB2, PNB (2)

Model Fit

p o2
n DGP Bias MSE MAE RMSE Bias MSE MAE RMSE
100 DGP1 0.0337 0.8824 0.5678 0.8286 1.0087 12.8673 2.9082 2.9082
200 DGP1 0.0146 0.3149 0.3647 0.5259 1.5038 13.3566 2.9154 2.9154
400 DGP1 0.0082 0.1512 0.2574 0.3702 1.1494 10.0914 2.4265 2.4265
100 DGP2 0.2548 4.0460 1.3438 1.8839 -0.6497 9.9417 2.6363 2.6363
200 DGP2 0.1576 2.8609 1.1010 1.6019 -1.7387 8.6040 2.6043 2.6043
400 DGP2 0.1230 2.0538 1.0146 1.4074 -2.5135 8.3882 2.6944 2.6944
100 DGP3 0.0817 2.0499 0.9058 1.3533 -3.0672 18.9067 4.0236 4.0236
200 DGP3 0.0022 1.3040 0.7537 1.1293 -4.2267 21.1753 4.4074 4.4074
400 DGP3 -0.0030 1.1062 0.6841 1.0456 -4.8248 23.9304 4.8336 4.8336
100 DGP4 0.4435 7.5325 1.8181 2.6294 -4.8439 26.5794 5.0085 5.0085
200 DGP4 0.2098 5.6230 1.4572 2.3142 -5.4983 30.7742 5.5106 5.5106
400 DGP4 0.1646 4.9351 1.3360 2.1924 -5.7249 32.8694 5.7249 5.7249

Table 4: Simulation Results, Parametric Zero-Inflated NB2, PZNB

Model Fit

I o2
n DGP Bias  MSE  MAE  RMSE Bias MSE  MAE  RMSE
100  DGP3 00649 12803 07326  1.0960  0.6909  17.8513  3.4707  3.4707
200 DGP3  -0.0112  1.1047  0.6838  1.0399  1.2994  14.9476  3.0492  3.0492
400 DGP3 00098  1.0271  0.6489  1.0083  0.7202  9.7396  2.4797  2.4797
100 DGP4 01896 63930  1.6121 24482  -2.3087  15.1158  3.5010  3.5010
200 DGP4 00911 54254 14833  2.2843  -3.0840  14.6203  3.5238  3.5238
400  DGP4 00778 50016 14390  2.2188  -3.7358  15.7922  3.7948  3.7948

Table 5: Simulation Results, Parametric Zero-Inflated NB2, PZNB (2)

Model Fit

p o2
n DGP Bias  MSE  MAE  RMSE Bias MSE  MAE  RMSE
100  DGP3 01375  1.8671  0.8696 12891  1.1098 159169  3.2548  3.2548
200 DGP3 00027 12394 07333 11011 11667  12.6048 29188  2.9188
400 DGP3 00114  1.0872 06730  1.0374  1.6609  14.8457  3.0775  3.0775
100 DGP4 05287 59245 18776 23705  -0.4685 115516 27957  2.7957
200 DGP4 00596  4.6952 13948 21182  -0.9419  10.7627 27499  2.7499
400  DGP4 00192 41172 12967  2.0121  -2.0107  8.8397  2.6257  2.6257
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Table 6: Simulation Results, Local Likelihood NB2, LLNB

Model Fit
j o2
n DGP Bias MSE MAE RMSE Bias MSE MAE RMSE

100 DGP1 -0.0130 0.7175 0.5764 0.7762 -2.6566 16.5093 3.6493 3.6493
200 DGP1 -0.0002 0.3727 0.4163 0.5654 -1.4546 11.3117 2.8724 2.8724
400 DGP1 0.0035 0.1929 0.3007 0.4139 -0.7426 8.2746 2.3744 2.3744
100 DGP2 0.0162 2.5268 1.0270 1.5093 -3.0952 15.9351 3.6791 3.6791
200 DGP2 0.0258 1.2522 0.7247 1.0654 -2.0237 10.2281 2.8215 2.8215
400 DGP2 0.0448 0.6344 0.5199 0.7699 -1.2310 6.3926 2.1132 2.1132
100 DGP3 0.0254 1.6898 0.8838 1.2633 -5.4854 32.1597 5.5965 5.5965
200 DGP3 -0.0031 1.3283 0.7741 1.1371 -5.4626 30.4489 5.4764 5.4764
400 DGP3 -0.0081 1.1471 0.7093 1.0642 -5.3692 29.0570 5.3692 5.3692
100 DGP4 0.0520 5.6778 1.5411 2.3252 -5.9819 36.2145 5.9831 5.9831
200 DGP4 0.0217 4.3151 1.3201 2.0528 -5.8178 34.0891 5.8178 5.8178
400 DGP4 0.0228 3.6870 1.1783 1.9062 -5.6631 32.2180 5.6631 5.6631

Table 7: Simulation Results, Nonparametric Conditional Density Estimator,
NPCDE

Model Fit

I
n DGP Bias MSE MAE RMSE
100 DGP1 -0.6424 2.1395 1.0977 1.3962
200 DGP1 -0.6919 1.5581 0.9643 1.2010
400 DGP1 -0.7474 1.3180 0.9042 1.1162

100 DGP2 -0.9036 6.2993 1.6571 2.4230
200 DGP2 -1.0005 5.0307 1.4819 2.1806
400 DGP2 -0.9426 3.9165 1.3189 1.9315
100 DGP3 -1.0113 3.8093 1.4157 1.9154
200 DGP3 -1.3167 4.0350 1.4626 1.9885
400 DGP3 -1.4749 4.4067 1.5371 2.0902
100 DGP4 -1.7878 12.0401 2.2362 3.4141
200 DGP4 -1.9885 12.4984 2.2623 3.5048
400 DGP4 -2.2346 13.4943 2.3707 3.6599

12



On average, the MSE achieved by the semiparametric estimator amounts up
to only 31% of the parametric model’s MSE (n = 400). As is the case for
the comparison with the linearly specified PNB (1), the relative performance
gains achieved by the semiparametric model tend to increase with larger sam-
ple sizes. A comparison of the model fit in terms of the precision parameter
o2 shows that the LLNB performs well in comparison to the PNB (1) and
PNB (2), even under correct specification of p (DGP1). The LLNB estimates
on o~ 2 benefits from larger samples. In DGP2, the LLNB outperforms both
parametric models with sample size n = 400.

In the settings with excess zeros, the results obtained for the LLNB are
still encouraging with an RMSE and MAE being on average ca. 6% to 21%
larger than the PZNB (1)’s RMSE and MAE in DGP3. The performance
of the LLNB appears to be relatively robust to the existence of excess zeros.
Under misspecification of y1 (DGP4), the local likelihood estimator outperforms
the zero-inflated parametric estimators in terms of MSE, RMSE and MAE
irrespective of the sample size. It can be concluded that the presence of excess
zeros does not per se confound the performance of the LLNB. An analogous
conclusion cannot be drawn for the NPCDE that severely suffers from excess
zeros in terms of predictive performance. In terms of practicability, it is worth
to notice a point related to implementation. The flexibly specified parametric
zero-inflated NB2 estimator suffers from convergence problems, in particular if
the sample size is small, leading to 304 convergence failures in 500 repetitions
for n = 100 observations under DGP4.

As a side note, it can be concluded that the nonparametric density estima-
tor performs poorly in terms of out-of-sample predictive power, as basically all
goodness-of-fit statistics are by far larger than those of the other models. In no
case does the NPCDE outperform a parametric or a local likelihood estimator
on average, even in the case of misspecification of the functional form of .
Moreover, the NPCDE appears to be highly sensitive to excess zeros leading
to a particularly bad performance in terms of out-of-sample predictions.

Additionally, we present boxplots of the MSEs computed in every repeti-
tion in Figures la to 2b to illustrate the robustness of the simulation results.
Compared to the PNB (1), the LLNB appears to be slightly more variable in
DGP1. However, it can be observed that the LLNB exhibits an almost iden-
tical behavior in all DGPs. This behavior cannot be confirmed for the PNB
(1), which has a far more variable MSE in DGP2. It becomes obvious that,
in contrast to the parametric NB2, the local likelihood model does not require
an ex ante specification of the functional form of the conditional mean. While
the MSE of the parametric NB2 model (PNB (1) and PNB (2)) is found to be
highly variable in the misspecification scenario (DGP2), the semiparametric
model continues to converge. Overall, inspection of the boxplots suggests that
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Figure 1: Boxplots, MSE (1), DGP1 and DGP2
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the simulation results are characterized by a particular degree of robustness,
even in the presence of a large fraction of zero-counts. Finally, the boxplots
confirm that, irrespective of the DGP, the out-of-sample MSE of the NPCDE
obtained in the 500 repetitions is much more variable than the goodness-of-fit
statistics of the parametric and semiparametric models. This is particularly
true in the presence of excess zeros.

Estimation of Incremental Effects

Since researchers are often interested in estimating the impact of some policy
program or some treatment effect, the second part of the simulation study
concentrates on estimating the incremental effect of the dummy variable X; 4,
from a sample of size n = 400 generated by DGP1 and DGP2, respectively.
The incremental effect (IE) of variable X; 4, is defined by IE(k,l|z) = E[Y|X =
r,X; 4, = k| —E[Y|X =z, X,4, =[], where the other regressors X are fixed
at some representative value. In our simulation example, the levels of the
treatment dummy X; 4, are (naturally) &k = 1, I = 0. The true incremental
effects is fixed for a representative observation with covariate X; 4, = 0 and
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Figure 2: Boxplots, MSE (1), DGP3 and DGP4
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X, held constant at a particular point on a grid from 0 to 1 by step size
0.001 (X;., is drawn from a uniform distribution from 0 to 1). Figures 3a
and 3b and Table 8 display the average results obtained from estimation of
the incremental effect from every implemented model under DGP1 and DGP2.
The plots show the incremental effects at given values of X; ., as averaged over
all 500 repetitions. In DGP1, the IEs estimated by the parametric models are
very close to the true effects (grey line). However, in the case of a nonlinear
incremental effect, the linearly specified parametric model, PNB (1), entirely
misses the underlying patterns, i.e. the heterogeneity of the true incremental
effect w.r.t. X;. (grey line). Despite the ability of the more flexibly spec-
ified parametric model, PNB (2), to uncover the nonlinearity of the IE, the
resulting estimates are relatively far off the true line. The incremental effect
line of the semiparametric model is closest to the true curve in DGP2 which
is confirmed by results on the intergrated mean squared and absolute error in
Table 8. The results suggests that although a parametric model might be used
to detect heterogeneous effects, the quality of the resulting estimates might be
severely limited and conclusions might be drawn with caution.
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Figure 3: Incremental Effects
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Figures 3a and 3b present the average incremental effect of dummy X; 4, as estimated by the implemented
models on the basis of samples with n = 400 observations in R = 500 repetitions. In each repetition,
incremental effects are estimated at all grid points of Xj; .,. The estimates at a particular grid point are
then averaged over all repetitions. The underlying grid is constructed by steps from 0 to 1 of size 0.001.
The grey lines present the true incremental effects.

Table 8: Average Results for IMSE and IMAE for Incremental Effects

PNB (1) PNB (2) LLNB NPCDE
DGP  IMSE IMAE IMSE IMAE IMSE IMAE IMSE IMAE

DGP1 0.1125 0.2655 0.2788 0.4091 0.3494 0.4597 2.2379 1.2704
DGP2 3.3074 1.3961 2.8711 1.3668 1.1382 0.8345 7.2624 2.1934

Table 8 shows the average results of the integrated mean squared error (IMSE) and integrated mean absolute
error (IMAE), both calculated on a grid of X; o, = @¢, xc € [0, 1] with steps of size 0.001. In every repetition
we compute the integrated mean squared error as a measure of distance between the estimated and the true
regression lines over all (grid) points of the continuous covariate Xj ., .

4 APPLICATION TO HEALTH SERVICE DEMAND

4.1 Dataset and descriptive statistics

We use data from the Oregon health insurance experiment, a large scale exper-
iment providing randomly assigned access to public health insurance (Finkel-
stein et al., 2012). In 2008, more than 85,000 persons signed up to a waiting
list for Medicaid in the state of Oregon, USA. Out of this group, approximately
30, 000 households were randomly assigned to the treatment group. Treatment
status refers to access to Medicaid, i.e. the “winners” of the lottery were given
the opportunity to apply for Medicaid. An equal number of individuals were
chosen from the waiting list to form the control group. In their extensive
study, Finkelstein et al. (2012) show that being treated increased an indi-
vidual’s probability to have health insurance by approximately 25 percentage
points.
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The insurance program which was the subject of the lottery was the Oregon
Health Plan (OHP) Standard, a public health program providing relatively
generous benefits to adult persons with low income who were not categorically
eligible for public insurance (at the time of the experiment, a second public
insurance program existed, namely, OHP Plus providing health insurance for
certain population groups, e.g. disabled persons or pregnant women). The
eligibility criteria of OHP Standard consisted of age (19 to 64 years), residence
in Oregon (USA), citizenship or status as a legal immigrant, absence of health
insurance for at least six months, and income below the federal poverty level
(FPL). Moreover, the individual’s assets must not have exceeded $2,000. Being
covered by OHP Standard, individuals gained access to comparatively generous
benefits, with no consumer cost sharing. The benefits covered most medical
procedures, e.g., physician services, prescription drugs, and hospital stays.
Dental care and vision care were not covered. For more details on the Oregon
lottery, the health insurance programs, the randomization procedure, and the
composition of the samples, refer to Finkelstein et al. (2012), Baicker et al.
(2013), Allen et al. (2010) and Taubman et al. (2014).

Following Finkelstein et al. (2012), we estimate the intent-to-treat (ITT)
effect of winning the lottery using data from the 12-months follow-up sur-
vey. As we extend the set of regressors included in the regression model, we
need to discard observations with missing information. As a consequence, our
sample size is reduced to 15,518 complete observations compared to 23,441
observations in Finkelstein et al. (2012). Table 9 compares the demographic
characteristics for our subsample with those of the original sample. Overall,
the means of the observed demographic characteristics (such as sex, age, in-
come, education) and the number of chronic conditions are very much the same
in both samples. We created the number of chronic conditions out of the sur-
vey items “have you ever been told you have ... a) diabetes b) asthma c) high
blood pressure d) chronic obstructive pulmonary disease e) depression f) heart
disease g) congestive heart failure h) high cholesterol or i) kidney problems.”
Health care utilization, however, seems to be slightly lower in our subsample.

4.2 Results

Our goal is to model the demand for health care by estimating the intent-to-
treat effect for the dataset described in the previous section. We use parametric
and semiparametric negative binomial regressions to estimate health service
demand measured by the number of doctor visits in the last six month (y;;,).
We follow Finkelstein et al. (2012, 1071) where the demand for health care in
a linear regression model is given by:

Yin = Bo + LiLOTTERY), + Xinf2 + €in, (10)
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Table 9: Means of Demographic Characteristics

subsample  full sample
% Female 0.603 0.592
% White 0.847 0.824
% Black 0.030 0.034
% Spanish/Hispanic/Latino 0.096 0.116
% English preferred language 0.932 0.917
% MSA 0.744 0.748
Age
% 20-50 0.688 0.669
% 50-64 0.312 0.331
Income (% federal poverty limit)
< 50% 0.395 0.404
50% — 75% 0.126 0.129
75% — 100% 0.147 0.145
100% — 150% 0.192 0.186
> 150% 0.139 0.136
Education
% Less than high school 0.146 0.168
% High school diploma or GED 0.502 0.498
% Vocational training or 2-year degree 0.231 0.221
% 4-year college degree or more 0.121 0.113
Insurance coverage
Any insurance? 0.410 0.411
OHP /Medicaid 0.213 0.215
Private insurance 0.028 0.026
Health status
Number of chronic conditions 1.410 1.405
(1.449) (1.453)
Health Care Utilization
Outpatient visits last six months 1.815 1.949
(2.655) (2.923)
Emergency room visits last six months 0.390 0.439
(0.903) (0.969)
Inpatient hospital admissions last six months 0.081 0.096
(0.365) (0.399)
Prescription drugs currently 2.144 2.330
(2.748) (2.850)
Maximum number of observations 15,518 23,441

Full sample refers to Table V in Finkelstein et al. (2012).

Standard deviations in parentheses.
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with indices ¢, h referring to individual ¢ and household h. Whereas the set
of regressors, X;;, in Finkelstein et al. (2012) is restricted to those covariates
being correlated with the probability of winning the lottery (e.g. dummies
on household size and survey wave as well as their interactions), we consider
additional regressors. We include variables on gender, household income (as a



percentage of the federal poverty level), educational attainment, race (white,
black, hispanic) and dummies indicating metropolitan statistical areas and En-
glish as preferred survey language. In the linear setup, 5; can be interpreted as
the effect of extending public health insurance coverage on the corresponding
outcome variable. We define the I'TT effect as the incremental change con-
trasting the individual counterfactual predictions of winning the lottery with
losing:

— E[ylh‘LOTTERYh = 0, Xih = xih] s

depending on the other regressors X;,. The variables that are included in
addition to the regressors in Finkelstein et al. (2012) might be correlated with
the lottery status and health service demand, so that the I'TT effect might
differ across individuals. The estimates of 5; using Finkelstein et al. (2012)’s
set of regressors and a linear model are 0.269 (0.045) in our subsample and
0.314 (0.054) in Finkelstein et al. (2012)’s sample. Standard errors are in
parentheses. The full results are available upon request.

Table 10: Estimates from Parametric NB2 Regression

) (2) 3) )

Lottery (ITT) 0.147*** 0.140*** 0.262*** 0.185
(0.023) (0.022) (0.033) (0.158)
Income (% federal poverty line) -0.000** 0.000 0.000
(0.000) (0.000) (0.001)
Income squared 0.000
(0.000)

ITT x Income (% federal poverty line) -0.002***  -0.004***
(0.000) (0.001)

ITT x Income squared 0.000**

(0.000)

Female 0.305*** 0.303*** 0.293***
(0.023) (0.023) (0.032)

Age 0.009*** 0.009*** 0.006***
(0.001) (0.001) (0.001)

Log-Likelihood -28,243.28  -28,065.66  -28,052.68  -28,027.59

Number of observations in all regressions is 15,518. Standard errors in parentheses. *p<0.05; **p<0.01;
***p<0.001. All regressions include the treatment dummy as well as variables on the survey waves, household
size and their interactions. Additional regressors included in Regressions (2)-(4) are income, age, and
dummies for female, high school or GED, vocational training/2-yr degree, 4-yr degree or more, English
preferred language, a dummy on metropolitan statistical area, white, black, and Hispanic. In addition to
the regressors reported in Column (4), the interactions of the treatment dummy with all (non-technical)
covariates are included in Regression (4), i.e. with gender, income, age, education, English, metropolitan
statistical area, race variables and income squared.

We contrast the ITT effect as estimated by semiparametric local likelihood
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negative binomial 2 estimator (LLNB) to the results obtained from the para-
metric negative binomial model in various specifications. Table 10 shows the
main estimates for the parametric model. Table 14 in the Appendix provides
evidence on in-sample model fit that is in line with our simulation results. The
results suggest a superior model fit of the LLNB as compared to all paramet-
ric models. The parametric model is estimated in several specifications: The
model PNB (1), with results in the first column in Table 10 is the negative
binomial 2 model version of the linear model in Finkelstein et al. (2012), i.e.
only the treatment variable and dummies for the survey waves, household size
and their interactions are included. PNB (2) with results in the second column
of Table 10 uses an extended set of regressors as compared to the initial model,
i.e. the variables on gender, education, English preferred language, race vari-
ables and a dummy indicating a metropolitan statistical area. Regression (3),
called PNB (3), further includes the interaction term of the I'TT with income.
Finally, model PNB (4) is a flexible specification including the squared ver-
sion of income as well as all two-way interactions of the treatment variables
with the non-technical regressors including income and income squared. More
details can be found in the Appendix and in Table 10.

As expected, women visit a doctor more often than men do. Moreover,
the demand for doctor visits increases with age. The direct effect of income
on the number of doctor visits in the parametric model is virtually equal to
zero in models (2) to (4). However, the interaction term of income and the
lottery outcome is negative and significant, indicating that the I'T'T might be
larger for individuals with low income. According to the flexible Model (4)
the interaction of income squared with the treatment variable is significantly
different from zero pointing at an ITT being heterogeneous with respect to
income.

Figure 4 depicts the ITT of being selected in the lottery (i.e. being able to
apply for OHP Standard) according to individual income as estimated by the
semiparametric model and the parametric regressions (2) to (4). We calculated
the I'TT for each individual and then plotted the estimated ITTs according
to income categories. While the PNB (2) in specification suggests that the
ITT is slightly positive and similar in magnitude for virtually all levels of in-
come, the local likelihood estimator reveals a substantially nonlinear effect.
Accordingly, the LLNB suggests positive ITTs for the majority of individu-
als with income below 150% of the federal poverty level. For the majority
of observations with intermediate levels of income, the LLNB predicts a neg-
ative intent-to-treatment effect (as indicated by a median ITT below zero).
The ITT estimates are relatively dispersed for high-income individuals with
median effects close to zero up to a level of 350% of the FPL. The PNB (3)
incorporates an interaction of the treatment dummy with income leading to a
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Figure 4: Boxplots of I'TT Effects
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The boxplots present the estimated I'TTs by the semiparametric and the parametric model in three different
specifications. For each individual, the counterfactual difference of the outcome variable is computed that
would be expected from a change in treatment status from 0 to 1. ITTs are plotted according to income
categories. The boxplot in Figure 4a shows the ITT estimates of the LLNB. Boxplots 4b to 4d present the
ITTs as estimated by the parametric models (2) to (4) from Table 10.

(monotonically) decreasing ITT as depicted in Boxplot 4c. The nonlinearity
of the I'TT in persons’ income is confirmed by the results of the flexibly spec-
ified parametric Model (4) illustrated in Figure 4d . As the latter includes a
squared term of income as well as the two-way interactions of the treatment
variable with the (non-technical) covariates, it is sufficiently flexible to reveal
the nonlinear ITT.

A plausible explanation for the heterogeneity of the ITT with respect to
income might be found in individuals’ eligibility. Allen et al. (2010) state that
the sign-up for the Oregon lottery could not be made conditional on eligibility.
The information individuals needed to provide at the registration was kept at
a low level in order to reduce potential barriers to enrollment. Before the reg-
istered persons were assigned to the treatment or control group, the available
information was used in order to exclude ineligible persons (e.g., according to
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age or their address). However, this procedure was highly inefficient, due to
the limitations of the information (Allen et al., 2010) . As a consequence, truly
ineligible persons were assigned to the treatment group. However, only indi-
viduals who were truly eligible were later on able to enroll in Medicaid and,
thus, experience the expected increase in the number of doctor visits. Allen
et al. (2010) provide evidence that not meeting the financial criteria (i.e. the
income and assets requirements) was one of the major reasons why members of
the treatment group did not apply for Medicaid and why, if they submitted an
application, their applications were denied. Allen et al. (2010) find that only
60% (ca. 18,000) of the treated persons applied for Medicaid and only 30% (ca.
9,000) successfully enrolled in the program. We have no information about the
actual treatment status, but observe only the assigned treatment status. As
the misclassification of the actual treatment status very likely increases with
income, we expect the I'TT effect to flatten out with rising income (attenuation
bias). Figure 4 appears to illustrate these patterns. The results obtained by
the PNB with the flexible specification (4) confirm the nonlinearities of the
ITT detected by the semiparametric estimator.

As we have shown in this section, our semiparametric model is not only
able to reveal heterogeneous effects in Monte Carlo simulations but also in
a real-life application. While the parametric model needs a-priori knowledge
about the functional form of the model, the semiparametric model is able to
reveal heterogeneous effects without specifying the functional form. Of course,
once we have seen the functional form of the heterogeneity in the application
using our semiparametric estimator, we were also able to estimate it using
a parametric model. However, in real-life applications there may be many
potential candidates for heterogeneous effects and hence a completely flexible
parametric model may become too involved. In contrast, the LLNB does not
require that specification step and detects non-linearities automatically by the
data-based bandwidth selection.

5 CONCLUSION

In this study, we proposed a new semiparametric count data model to model
health service demand. The major feature of the derived local likelihood esti-
mator is that it addresses the structure of the limited dependent variable (as
a count), while maintaining a high degree of flexibility at the same time. It
allows abstracting from the linearity assumption embodied in the conditional
mean specification of virtually all the usual count data models. The semipara-
metric estimator enables modeling heterogeneous effects and allows consistent
estimation under minimal assumptions. Moreover, our semiparametric esti-
mator explicitly addresses (i) overdispersed and (ii) mixed data, which are
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frequently encountered in the estimation of health service demand. The local
likelihood negative binomial 2 estimator might be an attractive tool for future
research in applied health economics. Our estimator could be employed in
the context of robustness checks when there is a concern about the validity of
the conditional mean assumption, due to nonlinear or heterogeneous effects.
Moreover, heterogeneous patterns might be the object of interest, for instance,
in an evaluation of a policy for various subpopulations.

The presented simulation study and empirical application to data from the
Oregon Health Insurance Experiment provide encouraging results, based on
the predictive power of this semiparametric model as well as on estimation
of incremental effects. The results of the simulation study are characterized
by a substantial degree of robustness, whereas the local likelihood estimator
is found to benefit from larger samples. Furthermore, the performance of the
semiparametric estimator has been shown to be superior to parametric and
nonparametric alternatives, irrespective of the goodness-of-fit statistic consid-
ered. A good performance of the semiparametric estimator can be observed
even in presence of excess zeros. As a minor result, the out-of-sample pre-
dictive power of the NPCDE has been shown to be inferior to those of the
parametric and semiparametric count data models, in particular in the pres-
ence of excess zeros. The model-fit results from the Oregon Health Experiment
data favor the use of the local likelihood method in estimating the demand for
health care. Moreover, the LLNB model was able to reveal a heterogeneity of
the intent-to-treat effect with respect to individual income. The detected pat-
terns are in line with economic intuition and the institutional settings, which
suggest that the I'TT reasonably differs according to individuals’ eligibility.
Using the parametric NB2 in a linear specification, the heterogeneity in the
data would have been missed. If the parametric NB2 model is specified in a
sufficiently flexible manner, the parametric results confirm the findings of the
semiparametric estimator.

Despite the good results of the local likelihood estimator, there is still room
for further improvements. For one thing, the implemented estimator is a local
constant estimator, i.e. it does not benefit from the gains regarding bias reduc-
tion that can be achieved with higher-order polynomial approximations (Fan
et al., 1995). For another, the bandwidths of the local likelihood estimators
were obtained by least-squares cross-validation, for convenience of implemen-
tation. But, for example, Fan et al. (1995) and Frolich (2006) show that the
performance of a local likelihood estimator improves if “plug in” methods of
asymptotically optimal smoothing parameters are used.

Future studies might exploit further advantages of the local likelihood ap-
proach and develop more complex semiparametric count data models: Since
the likelihood framework provides explicit expressions for the variance of the
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estimator (Fan et al., 1998), benefits in terms of inference practicability (con-
fidence bounds) might be arguments in favor of the local likelihood estimator
in applied research. Moreover, the local likelihood framework can be extended
to more complex count data settings, for instance, in the presence of hurdles
and mixtures.
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6 APPENDIX

Note on Implementation

The statistical software used in the simulation study and the empirical appli-
cation was the 3.2.0 version of R in combination with version 0.99.446 of the
R project user interface. The VGAM package, version 1.0-0, by Yee (2015) was
used for estimating the parametric NB2 model. The NPCDE and the local
likelihood estimator were implemented by the 0.60-2 version of the np package
by Hayfield and Racine (2008).

List of Implemented Models in the Simulation Study

Table 11: List of Implemented Models, Simulation Study

Name Model Regressors

LLNB Local Likelihood Negative Binomial 2 Xiers Xiydy» Xi,do
(Semiparametric)

PNB (1) Negative Binomial 2 Xierr Xiydys Xi,do
(Parametric)

PNB (2) Negative Binomial 2 Xiers Xidy> Xi,dg> Xiclz Xier - Xiydys
(Parametric) Xirer - Xidos Xiydy - Xidy

PZNB (1)  Zero-Inflated Negative Binomial 2 Xierr Xiydys Xi,dy
(Parametric)

PZNB (2) Zero-Inflated Negative Binomial 2 Xierr Xiydyr Xidg» Xi2,61’ Xier - Xidy
(Parametric) Xier * Xidg> Xiydy * Xi,do

NPCDE Non-parametric Conditional Density Estimator X ¢;, X a,, Xi dy

(Nonparametric)
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Variables in the Empirical Application

The variables included in the regression have been subject to transformations
to achieve gains in terms of computation time. We build upon the work by
Finkelstein et al. (2012) who include dummies on the survey waves of the 12
month follow up surveys, dummies on the household size and their interac-
tions since the probability of being assigned to the treatment group varies
according to these characteristics (Finkelstein et al., 2012, 1071, 1072). For
instance, individuals who registered for the lottery could also register up to
two additional persons living in the same household. In the Oregon Health
Experiment, treatment assignment was provided to all household members
living in the same household as the person selected. Thus, individuals liv-
ing in larger households were more likely to win access to health insurance.
In the original data, the variables ddddraw_sur_2, ddddraw_sur_3, ddddraw_sur_4,
ddddraw_sur_5, ddddraw_sur_6, ddddraw_sur_7 indicate the survey waves of the 12-
months follow up survey. We merged the data from all survey waves following
Finkelstein et al. (2012). The variables dddnumhh_li2 and dddnumhhli_3 in-
dicate the number of persons who were additionally registered at the time
of lottery sign-up. The exact description of the questionnaire item are listed
in the reference “Codebook: Oregon Health Insurance Experiment, Descrip-
tive Variables”, available at http://www.nber.org/oregon/index.html. The
variables ddddraXnum_2_2, ddddraXnum_2_3, ddddraXnum_3_2, ddddraXnum_3_3,
ddddraXnum_ 4.2, ddddraXnum_5_2, ddddraXnum_62, and ddddraXnum_7_2 are in-
teractions of the survey and household size indicators and constructed as
ddddraXnum_j_i = ddddraw_sur_j - dddnumhh_li_i for j € {1,2,...,7} and i € {2,3}. In
order to save computation time we merged the dummy variables on the survey
waves ddddraw_sur_2, ddddraw_sur_3, ddddraw_sur_4, ddddraw_sur_5, ddddraw_sur_6,
ddddraw_sur_7 to a combined categorical variable ddddraw_sur_comb. Analogously,
ddddraXnum_2_2, ddddraXnum_-2_3, ddddraXnum_3_2, ddddraXnum_3_3,
ddddraXnum_4_2, ddddraXnum_5_2, ddddraXnum_6_2, and ddddraXnum_7_2 are com-
bined to one categorical variable ddddraXnum_comb. The transformations im-
posed leave us with a set of 16 instead of 28 variables and hence allow us to
substantially reduce the computation time for bandwidth selection.
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List of Implemented Models in the Application Study

An overview on the implemented models is presented in Table 12.

Table 12: List of Implemented Models, Empirical Application

Name Model Description of Variables included
LLNB Local Likelihood NB 2 Treatment, survey wave, household size, interactions of
(Semiparametric) survey wave and household size, female, income, age,
education dummies (high school/GED, voc. training/2yr-degree,
4-yr degree or more), English preferred language,
metropolitan statistical area, race (white, black, hispanic)
PNB (1) NB?2 Treatment, survey wave, household size, interactions of
(Parametric) survey wave and household size, cf. Finkelstein et al. (2012)
PNB (2) NB2 Treatment, survey wave, household size, interactions of
(Parametric) survey wave and household size, female, income, age,
education dummies (high school/GED, voc. training/2yr-degree,
4-yr degree or more), English preferred language,
metropolitan statistical area, race (white, black, hispanic)
PNB (3) NB2 As in PNB (2), plus interaction of treatment with income
(Parametric)
PNB (4) NB2 As in PNB (2), plus income squared, and all two-way
(Parametric) interactions of the treatment dummy with the covariates

(including income and income squared)
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Bandwidth Selection in the Empirical Application

Table 13 lists the bandwidths as computed for the LLNB by least-squares cross
validation.

Table 13: Bandwidths for Kernel Estimators

Number of Doctor Visits LLNB
Treatment ordered 0.0862
ddddraw_sur_comb factor 0.6625
dddnumhh_li_2 factor 0.1640
dddnumhh_1i_3 factor 0.0000
ddddraXnum_comb factor 0.8889
Female factor 0.0029
Income (% of FPL) continuous  44.1640
Age continuous 7.8395
Educ. HS diploma or GED factor 0.1235
Educ. Voc. Training or 2-yr degr. factor 0.4624
Educ. 4-yr College or more factor 0.5000
English preferred language factor 0.0511
ZIP factor 0.5000
White factor 0.2704
Black factor 0.5000
Hispanic factor 0.5000

Application to Health Service Demand: Model Fit

Table 14 presents the results on in-sample model fit as obtained from the
semiparametric, and the parametric negative binomial 2 model as specified in
Regression (2) to (4) in Table 10.

Table 14: Model Fit, in-sample

MSE MAE RMSE

LLNB 6.5730 1.6591 2.5638
PNB (2) 6.8876 1.7043 2.6244
PNB (3) 6.8734 1.7010 2.6217
PNB (4) 6.8508 1.6982 2.6174
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